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We present a method for fast computation of the density of states of binary systems. The contributions of
each of the components to the density of states can be separated based on the conditional independence of
the individual components’ degrees of freedom. The conditions establishing independence are the degrees of
freedom of the interfacial region between the two components. The separate contributions of the components
to the density of states can then be calculated using the Wang-Landau algorithm [Wang, F.; Landau, D. P.
Phys. ReV. Lett.2001, 86, 2050]. We apply this method to a 2D lattice model of a hydrophobic homopolymer
in water that exhibits protein-like cold, pressure, and thermal unfolding. The separate computation of the
protein and water density of states contributions is faster and more accurate than the combined simulation of
both components and allows for the investigation of larger systems.

1. Introduction

During the past 50 years, computer simulations have become
an essential tool for the investigation of the dynamic and
equilibrium properties of complex systems. Monte Carlo (MC)
methods are widely used to investigate equilibrium behavior,
and numerous techniques have been developed to study systems
for which the traditional Metropolis algorithm is inadequate.1

Ergodic sampling is difficult to attain for simulations of high-
density or low-temperature systems, which are likely to become
trapped in local potential energy minima for a large number of
simulation steps. This problem is especially pronounced in
simulations of proteins, where the comparatively few native state
configurations are separated by a large energy gap from the
ensemble of denatured configurations.2

Several advanced MC methods have been applied to protein
simulations that were developed to promote ergodic sampling
by improving the exploration of phase space. These include
configurational bias trial moves,3-6 pruned-enriched Rosenbluth
methods,7-8 parallel tempering,9,10multicanonical methods,11,12

and the Wang-Landau (WL) method.13-15 The multicanonical
and WL methods belong to a class of techniques called flat-
histogram methods that are designed to achieve a broad sampling
of phase space and to directly calculate free energies. They
attempt to produce a uniform distribution of a macroscopic
property, such as the potential energy, by sampling each
microstate of the system with a probability inversely proportional
to the density of states (DOS) of the corresponding energy level.
The DOS is not known initially but is instead determined in
the course of the simulation, either explicitly in the WL scheme,
or implicitly in multicanonical methods. Knowledge of the
density of states,Ω, then allows the calculation of the
thermodynamics of the system.

The WL method operates by performing a random walk in
some system property, often the energy, to sample a large region
of phase space and provide an estimate for the DOS through
successive refinement at every simulation step.13,14The method
was originally developed for lattice systems13 but has been
successfully extended to continuum systems.16,17 The WL
method is frequently used to study proteins both on a lattice15,18

and in continuum space19-21 because of its ability to efficiently
sample a wide range of configurations and energies. It has also
been applied to perform random walks in non-thermodynamic
variables, quantities other than the energy, volume, or number
of particles. These applications include calculation of the density
of states as a function of reaction coordinates22,23 and the end-
to-end distance of a polyelectrolyte chain.24 This flexibility of
the method is utilized in the approach presented here to separate
the calculations of the protein and water contributions to the
density of states in a lattice model.

Separation of the protein and water DOS calculations
dramatically reduces the computation time and increases the
speed of a simulation of a previously developed lattice model
for proteins in explicit water.25 This approach reproduces the
experimentally observed phenomena of cold-, pressure-, and
heat-induced protein unfolding using a model of a hydrophobic
homopolymer in water. The earlier study showed that a physical
treatment of the entropic and enthalpic properties of hydrophobic
hydration in a simple protein model was sufficient to recover
the qualitative shape of the protein phase diagram. However,
the complexity of simulating both protein and water, even in a
reduced two-dimensional lattice model, limited the sizes of
proteins to be simulated to 20 monomers or fewer.

The structure of the paper is as follows. In section 2, we begin
with a review of the lattice model for protein and water used in
ref 25 and then discuss the technique for separating the
contributions of water and the protein to the DOS. The WL
algorithm is reviewed briefly, and implementation features
specific to the protein and water model are discussed. In section
3, we then compare the speed and accuracy of the new and the
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original methods. The main conclusions and suggestions for
further applications of the method are presented in section 4.

2. Methods

2.1. Model.This model was developed to probe the various
properties of protein pressure-temperature stability through the
use of a simplified set of interactions representing water-water
hydrogen bonding and the hydration of hydrophobic solutes.25

The protein and water molecules sit on a 2-D lattice, where
every site is occupied either by a protein monomer or a water
molecule, as shown schematically in Figure 1. The protein is
modeled as a chain of attached monomers where adjacent
monomers on the protein occupy nearest-neighbor sites on the
lattice. Each monomer on the protein is hydrophobic, and the
protein has no self-interaction aside from excluded-volume
interactions. Its only interaction with the water is through its
effect on hydrogen bonding, described below. We are currently
studying an extension of this simple model that includes different
types of monomers along the protein’s backbone (hydrophobic,
polar), but here we restrict our discussion to hydrophobic
homopolymers. Although we use the term protein throughout,
it should be understood that in reality this is a minimal model,
albeit one that exhibits complex, protein-like phase behavior.

Water molecules have four hydrogen bonding arms, and each
arm can interact with a neighboring lattice site. The variable
σij denotes the orientation of a bonding arm on water molecule
i associated with adjacent sitej. A bonding arm can have one
of q orientations, and therefore,σij can have values between 1
andq. Each of the bonding arms on the same water molecule
assumes orientations independently of the other three. A
hydrogen bond forms between two neighboring water molecules
i andj when their bonding arms are properly oriented, satisfying
the condition |σij - σji| e λ. λ represents a tolerance for
hydrogen bonding or the size of the range of acceptable bonding

arm pair orientations. This range differs between bulk water
(λb) and interfacial water (λh). Here interfacial water refers to a
situation where either of the hydrogen-bonding water molecules
is adjacent to one or more protein monomers. Bulk water
molecules are colored white in Figure 1, and interfacial water
molecules are colored gray. A smaller range of hydrogen
bonding orientations for interfacial water molecules (λh < λb)
constitutes an entropic penalty for hydrogen bonding around
the protein monomers. This penalty originates from observations
that water molecules forming hydrogen bonds around hydro-
phobic solutes sample fewer configurations and thus have
reduced entropy compared to the bulk.26,27

The model also incorporates an energetic distinction between
bulk and interfacial hydrogen bonds. Bulk hydrogen bonds form
with a strengthJ, whereas interfacial hydrogen bonds form with
strengthJ + JH. Generally, we useJH > 0 since there is an
enthalpic bonus for interfacial hydrogen bonding, originating
from the lower enthalpy configurations sampled by solvation
shell hydrogen bonds around hydrophobic solutes.27,28 The
complete Hamiltonian of the model is then

whereNHB is the total number of hydrogen bonds (both bulk
and interfacial) andNHB,i is the number of interfacial hydrogen
bonds.

The lattice is treated as compressible, and the total volume
expands uniformly by a value∆V upon the formation of a
hydrogen bond. This effect reproduces in the model the lower
local density associated with hydrogen bond formation, which
is important for recovering water’s unusual thermodynamics,
such as its density anomalies. An expression for the system
volume is then

whereV0 is the system volume without hydrogen bonding.V0

) V0Nsites, whereV0 is the volume per lattice site andNsites is
the number of lattice sites. The compressible lattice model of
water with independent hydrogen bonds was originally devel-
oped by Sastry et al. to study the thermodynamics of supercooled
water.29

2.2. General Simulation Method.The basis of the present
method lies in the observation that the properties of independent
subsystems are separable.30 Given two subsystems 1 and 2 that
are weakly interacting (i.e., the subsystems interact sufficiently
to maintain thermal equilibrium but not enough that intermo-
lecular interactions are taken into account), the combined energy
of the system,Et, can be written

where E1 and E2 are the energies of subsystems 1 and 2,
respectively. This additive relation holds true for properties such
as the entropy and free energy.30 The density of states for the
combined systemΩt has the property

where Ω1 and Ω2 are the DOS’s of subsystems 1 and 2,
respectively.

Although the above relations hold for any set of independent
subsystems, the overwhelming majority of binary models of
interest involve strongly interacting subsystems. However, the
complexity of a simulation of a binary system could be reduced
if the calculations of the properties of the components could be

Figure 1. Model protein and water. The black circles represent protein
monomers, and the lines connecting them are covalent bonds. The white
and gray circles are bulk and interfacial water molecules, respectively.
The four arms on each water molecule are the hydrogen bonding arms.
The variableNpairs,b counts the number of bulk bonding arm pairs
involving two bulk water molecules. Two examples are shown of
interfacial bonding arm pairs, which involve at least one interfacial
water molecule.Npairs,i is the total number of these interfacial bonding
arms. Nu counts the number of unpaired bonding arms associated
with a protein nearest neighbor site. Note that this is a depiction of a
portion of the simulation box, and in practice a larger box is used to
prevent the protein from interacting with itself across the periodic
boundary.

H ) -JNHB - JHNHB,i (1)

V ) V0 + NHB∆V (2)

Et ) E1 + E2 (3)

Ωt ) Ω1Ω2 (4)
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separated, allowing for independent simulations of each species.
Some systems, such as the model presented here, are well-suited
for separation because the short-range nature of their intermo-
lecular interactions limits the size of the interacting region
between the components. As we discuss below, the separate
calculations of protein and water properties can then be
performed analytically or through simpler simulations without
the need to evaluate the interaction potential.

Separate simulations are possible for conditionally indepen-
dent subsystems. The mathematical definition of conditional
independence states that eventsA and B are conditionally
independent given that eventC has occurred, when

p(A ∩ B|C) is the joint probability of observing eventsA andB
given that eventC has occurred,p(A|C) is the conditional
probability of event A given event C, and p(B|C) is the
conditional probability of eventB given eventC.31

The principle of conditional independence can be applied to
statistical mechanics through extension of eqs 3 and 4. A binary
system where components 1 and 2 interact directly can be
described by some potential

whereU is the total potential energy, which is a function ofê1

andê2, the degrees of freedom of the two components.U1 and
U2 are the individual energies of components 1 and 2, dependent
only on the degrees of freedom of each component.Ui is the
potential describing the interaction between the two components
and is a function of both components’ degrees of freedom. In
principle, termUi in eq 6 is only a function of a subset of the
degrees of freedom of components 1 and 2, those specifying
the interface (êi) between the two species. Consider the case of
a protein molecule in water, where the protein-water interaction
is limited to the first few solvation shell layers of water. The
degrees of freedom of bulk water far away from the protein are
irrelevant for the computation of the protein-water interaction
energy and can be ignored. This type of simplification has been
applied in some simulations of protein-water systems where
only the first few solvation shell layers of water are treated
explicitly and the bulk solvent is represented as a continuum
dielectric.32,33

Given an appropriate set of the interfacial degrees of freedom,
the properties of the two components can be computed on the
basis of their internal degrees of freedom separately. In the case
of the protein and water example, the protein and water
properties are conditionally independent for a given microscopic
state of the interface. For conditionally independent subsystems,
eq 4 can be rewritten as

whereΩt is the density of states of the total system. The notation
Ω1(ê1; êi) denotes the density of states of component 1 as a
function of its degrees of freedom given a specific set of
interfacial degrees of freedom. This equation allows us to relate
the simpler quantities of the individual component DOS to the
total DOS.

The challenge in implementing the method is to find
appropriate interfacial degrees of freedom that can establish
independence of the two components. The details and complex-
ity of these degrees of freedom will vary based on the interaction
potential and model of interest, but we can identify some guiding

principles for applying this method. The method is best suited
for lattice models, where the interactions are usually local and
limited to nearest- or next-nearest-neighbor sites. The method
also works well for solvation studies with a small concentration
of solute in a large continuum of solvent. These situations restrict
the number of interfacial degrees of freedom that must be
tracked in the simulation and offer the greatest opportunity for
improved computational efficiency.

2.3. Implementation.Ω is estimated using the WL method,14

a flat histogram algorithm that iteratively refines an estimate
for the DOS. A conventional WL simulation performs a random
walk in energy (U) in the range of attainable energies with
probability proportional to the reciprocal of the density of states
1/Ω(U). The density of states is not known a priori but is
determined in the course of the simulation. The simulation
begins in a randomly generated configuration with the DOS
estimator set atΩ(U) ) 1 for all energy levels. Trial moves
from an old configuration (o) to a new configuration (n) at
energy levelsUo and Un, respectively, are accepted with
probability

Every time a state with energyU is visited during the simulation,
the corresponding bin in the density of states estimate is updated
by multiplying the current value by a modification factorf ,
i.e.,Ω(U) f Ω(U)f. The modification factor is usually initialized
at f0 ) e1 ≈ 2.71828 to allow for efficient sampling of all
possible energy levels. During the simulation, a tally of the
frequency of visits to each energy level is updated in the form
a histogram,h(U), i.e., h(U) f h(U) + 1. To ensure an even
sampling of energy levels, the simulation continues untilh(U)
is considered sufficiently flat. The random walk should converge
to be a perfectly flat histogram after an infinite amount of time,
whereh(U) has the same value for each energyU, because states
with energyU have a degeneracyΩ(U) but are visited with
probability 1/Ω(U). Instead, we allow the simulation to continue
until h(U) at each energy level is greater than some percentage
of the average value〈h(U)〉. When this condition is satisfied,
the modification factor is reduced tofnew ) xfold, in order to
refine the precision of the density of states estimation process.
The energy histogramh(U) is then reset to zero and a new
iteration started. The process continues until the histogram is
again sufficiently flat and the modification factor is reduced
accordingly. This procedure is repeated untilf approaches unity
to within some designated tolerance.

In the original simulations of the protein and water model,25

we adapted the WL method and performed a random walk in
the two variables in our system Hamiltonian:NHB andNHB,i.
Any accessible state specified by these variables corresponds
to a specific system energy and volume given by eqs 1 and 2.
The result of these simulations is the density of states,Ω(NHB,
NHB,i), which can then be converted toΩ(U, V), sinceU andV
are determined onceNHB andNHB,i are known. The advantage
of performing a random walk inNHB andNHB,i, as opposed to
U and V, is that the parametersJ, JH, and ∆V need not be
assigned values during the simulation; this allows us to gather
the system thermodynamics from a single simulation for any
parameter set.

The new separated simulation method divides the calculation
into two parts. The protein contribution to the density of states,
Ωp, is calculated first using a WL simulation of the protein in
vacuo. The water contribution to the density of states,Ωw, is

pacc(o f n) ) min[1,
Ω(Uo)

Ω(Un)] (8)

p(A ∩ B|C) ) p(A|C)p(B|C) (5)

U(ê1, ê2) ) U1(ê1) + U2(ê2) + Ui(ê1, ê2) (6)

Ωt(ê1, ê2; êi) ) Ω1(ê1; êi)Ω2(ê2; êi) (7)
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then computed analytically, as described below. The method
takes advantage of the fact that the interactions between the
protein and water extend only to the first hydration shell. The
interfacial degrees of freedom,êi, that establish conditional
independence are the properties of first hydration shell water
molecules. These are the number of interfacial bonding arm
pairs, Npairs,i, and the number of unpaired bonding arms
associated with a nearest-neighbor protein monomer,Nu.

A WL simulation of the protein in vacuo is performed to
calculateΩp(Npairs,i, Nu). This simulation essentially determines
the degeneracy of protein configurations that produce a set of
solvation shell conditions if the water molecules were present.
These variables contain all of the relevant information about
the effect of the protein on the water structure and entropy,
allowing for the separate computation of the water density of
states. Note thatNpairs,i is a measure of the number of interfacial
bonding arm pairs, regardless of whether or not a hydrogen bond
is formed. Thus, if the first hydration shell were fully hydrogen-
bonded, the number of interfacial hydrogen bonds would be
equal to the number of interfacial hydrogen-bonding pairs, or
NHB,i ) Npairs,i.

Because the orientations of the hydrogen bonding arms on a
single water molecule fluctuate independently of each other,
each bonding arm pair can be treated separately and indepen-
dently. This allows for the exact computation of the water
orientational density of states,Ωw,o. According to the hydrogen-
bonding criteria described above, there are three types of
hydrogen bonding arms on water molecules. Examples of each
of these three classes of bonding arms are shown in Figure 1.
The first type are those bonding arms associated with a hydrogen
bonding arm on an adjacent water molecule where both water
molecules are not in the first solvation shell and are subject to
the hydrogen-bonding criteria of bulk water. The total number
of these bulk bonding arm pairs is denoted by the variable
Npairs,b, and these pairs can be subdivided into those that have
formed hydrogen bonds and those that have not,NHB,b and
NNHB,b, respectively. The second type of bonding arms are those
associated with a neighboring water molecule’s hydrogen
bonding arm where either or both of the water molecules are in
the first solvation shell and are subject to the interfacial
hydrogen-bonding criteria. The number of interfacial hydrogen
bonding and non-hydrogen-bonding pairs are given by the
variablesNHB,i andNNHB,i, respectively. The third type are those
unpaired bonding arms associated with a protein nearest-
neighbor molecule,Nu.

Analytical expressions exist for the density of states of each
of these three types of bonding arms. The derivation of the
orientational density of states is provided in the Appendix.
There, it is shown that the orientational density of states of bulk
bonding arm pairs (Ωw,b) for specific values ofNHB,b andNNHB,b

is given by the relation

A similar expression for the orientational density of states of
the interfacial bonding arms as a function ofNHB,i andNNHB,i is
given by the formula

Finally, the orientational density of states of the unpaired
bonding arms is simply

For each combination of the variablesNpairs,i and Nu, there
are many possible water orientational states, as illustrated in
Figure 2. The left panel corresponds to the protein, with the
points inside of the enclosed shape representing possible
combinations of the variablesNpairs,iandNu. Each of these points
is associated withΩp(Npairs,i, Nu) protein microstates, and in turn
with many possible water orientational states, defined by the
variablesNHB,b andNHB,i.

The value ofNpairs,i places an upper bound on the value of
NHB,i in eq 10, sinceNpairs,i ) NHB,i + NNHB,i. Thus, ifNpairs,i )
20, there are 21 possible interfacial bonding arm states inΩw,i

since (NHB,i, NNHB,i) can take on values (0,20), (1,19), ..., (19,1),
(20,0). For a given value of (Npairs,i, Nu) and system size (i.e.,
Nw), Npairs,b can then be calculated from

The value ofNpairs,bplaces an upper bound on the value ofNHB,b

in eq 9, sinceNpairs,b ) NHB,b + NNHB,b. Thus, if Npairs,b ) 50,
there are 51 possible bulk bonding arm states inΩw,b defined
by (NHB,b, NNHB,b).

The values ofNHB,b andNHB,i can vary independently of each
other because the orientations of bonding arms on an individual
water molecule fluctuate independently. The total number of
possible water orientational states for a given (Npairs,i, Nu) point
is then the product of the number of bulk bonding arm states
times the number of interfacial bonding arm states, or 51× 21
) 1071 for the sample case discussed here. This is also shown
in Figure 2 by the rectangular shapes of the regions correspond-
ing to possible water orientational states.

With the upper and lower bounds of the variables that define
water’s DOS determined, the water orientational DOS can be
calculated using eqs 9-11. The complete water orientational
DOS is a product of these three variables, given by

Ωw,b(NHB,b, NNHB,b) )
(Npairs,b)!

NHB,b!NNHB,b!
qNpairs,b(2λb + 1)NHB,b(q - 2λb - 1)NNHB,b (9)

Ωw,i(NHB,i, NNHB,i) )
(Npairs,i)!

NHB,i!NNHB,i!
qNpairs,i(2λh + 1)NHB,i(q - 2λh - 1)NNHB,i (10)

Figure 2. Schematic representation of protein (left) and water (right)
states. A point in the protein plane is defined by the variablesNpairs,i

and Nu and corresponds to many possible protein microstates. The
enclosed region of points on the left represents the limited range of
possible values ofNpairs,i andNu for a given protein size. The irregular
shape of the enclosed region on the left shows that not all combinations
of Npairs,i and Nu are possible. Each point in the protein plane is
associated with many points in the water plane, with two examples
indicated by arrows. Possible water states within these subdomains are
defined by the variablesNHB,b andNHB,i and shown by points on the
right. The rectangular shape of these subdomains reflects the fact that
all combinations ofNHB,b andNHB,i within the upper and lower bounds
are possible. For visual clarity, the water subdomains are not shown
as overlapping, although they do in practice.

Ωw,u(Nu) ) qNu (11)

4Nw ) 2Npairs,b+ 2Npairs,i + Nu (12)

Ωw,o(NHB,b, NNHB,b, NHB,i, NNHB,i, Nu) )
Ωw,b(NHB,b, NNHB,b)Ωw,i(NHB,i, NNHB,i)Ωw,u(Nu) (13)
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We then compute the total density of states corresponding to
each complete specification of water’s hydrogen bonding state
from the following relation:

whereΩw,c is the water configurational DOS.Ωw,c for a fully
occupied lattice where the protein already occupies space is
merely the number of different ways of arrangingNw water
molecules onNw lattice sites, orNw!.

Applying eq 14 yields the total density of states for each
possible specification of water’s hydrogen-bonding state as-
sociated with one value of (Npairs,i, Nu). Repeating the procedure
for all possible (Npairs,i, Nu) combinations (see Figure 2) yields
the total density of states. To recover the density of states as a
function of the independent variables used in the original
nonseparable computation,Ω(NHB, NHB,i), we simply sumΩt

over all possible combinations of the variables determiningΩt

(see eq 14) consistent with the choice (NHB, NHB,i).
Extracting protein properties from the simulation data requires

converting the density of states into more useful metrics. Since
there are fluctuations in both internal energy and volume in the
simulation, we reweigh the density of states in the isobaric-
isothermal ensemble. Given a pressureP and temperatureT,
the probability of a state,j, specified byNHB andNHB,i is

whereâ ) 1/kBT and ∆ is the isobaric-isothermal partition
function. The protein native state is defined as the set of system
states where the protein is maximally compact, when it has
formed the most possible nearest-neighbor protein-protein
contacts. Summing the probabilities of these compact states
gives the probability that the protein is folded

The change in free energy upon unfolding,∆G, can then be
calculated from the folding probability by using the equilibrium
relation from the two-state model of protein folding

The transition between the folded and unfolded states occurs
when∆G(P, T) ) 0 or, equivalently, whenpf(P, T) ) 0.5.

3. Results

To test the accuracy of the proposed method, we compare
the density of states generated by both approaches [i.e.,
nonseparable DOS calculations25 and separable DOS calcula-
tions (this work)] to the exact DOS for small homopolymers.
We perform 10 independent runs of homopolymers of size
NMonomers) 4-8 for each method, calculating the dimensionless
entropy,S ) ln Ω, rather than the density of states itself. All
simulations were performed with the flat histogram requirement
that the bin with the fewest entries in the histogram of visited
states has a value of at least 80% of the average number of
visits to a binned state, before proceeding to the next iteration.
The simulations continued until lnf < 10-7.

To determine the exact DOS, the protein component,Ωp, was
enumerated by hand for each homopolymer size, and the water
component was calculated using eqs 9-11. We followed the
analysis of Shell et al.34 and calculated the root-mean-square
deviation of the corresponding total entropy microstates between
each of the two simulation methods and the exact calculation
using the relation

where the notation〈〉 indicates an average over all microstates.
The percent root-mean-square deviation is then calculated by
normalizing the root-mean-square deviation by the range of
entropies observed in the exact enumeration,Smax - Smin. This
quantity is a measure of both the systematic and statistical error
in the simulation methods. In the remainder of the discussion,
we refer to this quantity as the percent error or relative error.

The results of these calculations are presented in Figure 3.
The two methods show comparable relative error for the smallest
homopolymers, the 4- and 5-mers. However, the relative error
of the combined DOS method increases dramatically for the
larger homopolymers while the separable DOS method shows
no significant change. The jump in the error of the combined
method between the 5- and 6-mers reflects an increase in the
complexity of phase space. The number of configurations
available to a 4- or 5-mer on a square lattice is limited to either
maximally compact or mostly unfolded states with a small
number of translational trial moves separating them. When
NMonomers g 6, a number of partially folded intermediate
configurations become possible which are visited less frequently
during a random walk, yielding less accurate estimates of the
degeneracy of those states. The number and complexity of these
partially folded intermediate configurations, and therefore the
complexity of phase space, can vary between monomer sizes.
This is reflected in the drop in the relative error of both methods
from the 7-mer to 8-mer. Even in the case of the 8-mer, the
separable DOS method is more than an order of magnitude more
accurate than the combined DOS method.

There are two reasons for the improved accuracy of the new
method. First, onlyΩp is calculated by the WL simulation,

Ωt(NHB,b, NNHB,b, NHB,i, NNHB,i, Nu) ) Ωp(Npairs,i, Nu)

Ωw,o(NHB,b, NNHB,b, NHB,i, NNHB,i, Nu)Ωw,c (14)

pj(P, T) )
Ω(NHB, NHB,i)e

-âU(NHB,NHB,i)-âPV(NHB)

∆(P, T)
(15)

pf(P, T) ) ∑
compact states

pNHB,NHB,i
(P, T) (16)

∆G(P, T) ) Gunfolded- Gfolded ) RT ln[1 - pf(P, T)

pf(P, T) ] (17)

Figure 3. Relative error of the dimensionless total entropy,S ) ln
Ωt, calculated from 10 WL simulations of the combined protein and
water system (squares) and 10 simulations of the separated protein in
vacuo system with exact enumeration of water orientations (circles).
The error is computed relative to the exact protein and water DOS,
enumerated by hand.

RMSD ) x〈(Sexact- Ssimulation)
2〉 (18)
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whereasΩw is calculated exactly. Thus, any error remaining in
the new method comes from imperfect sampling of protein
configurations. The dynamics of the protein simulation are such
that the most accurate estimates for its configurational degen-
eracy are provided for more extended conformations, whereas
less accurate estimates are obtained for compact and nearly
compact configurations. These rare conformations are less likely
to be visited in a random walk and long, high-precision WL
simulations are needed to calculate their degeneracy to the same
accuracy as extended conformations. When translating the
protein configurational DOS into the total density of states, these
extended conformations are associated with a larger number of
microstates than the compact protein conformations. The
minimal error of the less compact configurations is thus
emphasized and the error in the total DOS is reduced in the
new method.

The in vacuo protein simulations also improve the sampling
of protein configurations over that obtained in combined protein
and water simulations. The previous method required simulation
of the protein chain in a fully occupied lattice of water, where
each trial move requires displacement of a water molecule.
Although the WL acceptance criteria improves the acceptance
of these local trial moves over conventional Boltzmann sam-
pling, the dynamics of the random walk are sluggish enough
that the simulation requires long tunneling times between visits
to rare configurations. Bachmann and Janke observed a similar
difficulty in obtaining good sampling of rare configurations of
lattice proteins from WL simulations using local trial moves.35

In contrast, the new method can explore phase space more
effectively because the protein trial moves in the absence of
water are accepted more frequently, reducing the number of
simulation steps required between visits to these rare configura-
tions. For example, a local translational move involving two
monomers is accepted approximately 2% of the time in a protein
and water simulation of a 6-mer, whereas it is accepted 15% of
the time in a protein in vacuo simulation. Better sampling of
low-degeneracy configurations both improves their accuracy and
reduces the overall simulation time.

As a further verification of the method, we compare the phase
diagrams of a 17-mer calculated from simulations using the
previous (nonseparable) and the present (separable DOS) method
in Figure 4. The lines shown in the figure demarcate the ranges
of dimensionless temperature and pressure where the maximally
compact state is stable and indicate where an unfolding transition
occurs. Figure 4 shows good agreement between the two
methods at low and high temperatures, with some deviation at
intermediate temperatures near the point of maximum pressure
stability. The difference between the two simulations arises from
the improved accuracy in calculation of the cold-denatured state
degeneracy with the new method. The high-temperature transi-
tion of the protein from its folded conformation to an ensemble
of unfolded conformations upon thermal denaturation is es-
sentially the same for both methods, indicating that the
simulation estimates for the entropy of these states is very close
in both calculations. At temperatures approachingT ) 0, the
two methods show similar predictions for the phase diagram.
At T ) 0, the transition between the folded and cold-denatured
state is determined solely by the respective enthalpies, and errors
in the simulation estimates have no effect on the transition
pressure. However, the different predictions for the cold
denaturation portion of the phase diagram result from differences
in the prediction of the entropy of the cold-denatured state.

A major advantage of the separate simulation of the protein
and water is the dramatic improvement in the speed of the

simulations. Figure 5 compares the simulation running time with
increasing protein size for the previous nonseparable simulation
method against the present (separable degrees of freedom)
approach. The calculation of the water density of states requires
negligible computation time (less than 1 s) and is not included
in the runtime shown for the present method. It is clear from
Figure 5 that the separate simulation is more than 4 orders of
magnitude faster than the combined simulation, largely due to
the very pronounced reduction in the size and complexity of
the phase space sampled by the new method.

Figure 6 shows the growth in the number of microstates with
protein size in the DOS of the previous and present methods.
The removal of the bulk water degrees of freedom reduces the
number of microstates by more than 2 orders of magnitude,
from almost 4000 to 9 in the case of a 6-mer. Furthermore, the
size of phase space increases faster with system size for the

Figure 4. Phase diagram of a 20-mer homopolymer protein calculated
using the combined protein and water simulation DOS (solid line) and
the separated protein in vacuo simulation (dashed line). Temperature
and pressure are presented in dimensionless units, and the model
parameters used wereJH/J ) 0.2,∆V/V0 ) 0.348,λh ) 0, λb ) 1,
andq ) 30.

Figure 5. Runtimes for proteins of various sizes for the combined
protein and water simulation (squares) and the separated protein in
vacuo simulation (circles). The dip in runtime for the 4- and 9-mers
relative to the other protein chain lengths is due to the 2-D nature of
the lattice, in which these small chains form compact configurations
of perfect squares with fewer rare unfolding intermediates. This
simplifies the computation of the density of states for these proteins.
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combined simulation. The number of microstates in the com-
bined protein and water simulation is approximately a product
of the sizes of the DOS variablesNHB andNHB,i. NHB is a bulk
property and increases asNMonomers

2, whereasNHB,i is an
interfacial property and therefore increases linearly withNMono-

mers. The number of microstates in the combined simulation DOS
increases asNMonomers

3. In contrast, the protein configurational
DOS is a function of two interfacial properties,Npairs,i andNu,
both of which scale withNMonomers. Thus, the number of
microstates in the protein in vacuo simulation increases as
NMonomers

2.

4. Conclusions

The method presented here is a fast and accurate way to
simulate binary interacting systems as separate one-component
systems. Separate calculation of the protein and water DOSs
reduced the error in the computation ofΩ, improving the
predictions of the protein phase diagram. The method also
drastically reduced the time needed for simulation, allowing for
larger systems to be to studied. Although our investigation was
restricted to serial simulations on one processor and proteins
of 30 monomers or less in size, the method can be readily
extended to parallel computation for the simulation of proteins
larger than 30 monomers. As computational power grows, the
method will be scalable to even larger systems with the next
generation of computers.

The practical application of the method is limited to systems
where the interactions of the two components can be separated,
satisfying the requirement of conditional independence. The
approach is most suitable for binary lattice models, which
generally have local interactions that can be enumerated easily
for the set of interfacial conditions. It is also well suited for
studies of solvation at infinite dilution, where the interfacial
region is limited in size and the degrees of freedom are limited
in number.

There are many possible applications of the method, including
larger and more complex simulations of a mixture of lattice
polymers with structured monomers than have been previously
possible.36 Another possibility is to extend a recent study that
examined the effect of a single-site ionic solute on the energy
landscape of a dipolar solvent on a 9× 9 lattice.37 Studies of
polyelectrolytes on a larger lattice could be performed using

the approach presented here. The authors are currently applying
the present method to a modified version of the water-explicit
protein model that incorporates hydrophobic and polar protein
monomers. The method is also readily applicable to three-
dimensional lattice models.
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Appendix

The water orientational density of states,Ωw,o can be divided
into three components: the orientational density of states of
the bulk hydrogen bonding arm pairs,Ωw,b; the orientational
density of states of the interfacial hydrogen bonding arm pairs,
Ωw,i; and the orientational density of states of the unpaired
hydrogen bonding arms,Ωw,u. These quantities enumerate the
number of orientations available to each of these types of
bonding arms. Because each of the bonding arms on a water
molecule can vary independently of each other, each bonding
arm pair can be treated separately and independently in the
computation ofΩw,o. Thus,Ωw,o is specified by the relation

The number of orientations possible to the bulk bonding arm
pairs is a function of the number of bulk bonding arms that are
properly oriented for hydrogen bonding,NHB,b, and the remain-
der that do not form hydrogen bonds,NNHB,b. The degeneracy
of bulk orientations for a microstate specified byNHB,b and
NNHB,b is given by

The first term in the product on the right-hand side of eq 20 is
the number of ways of distributingNHB,b bulk hydrogen bonds
amongNpairs,bbulk hydrogen bonding arm pairs, whereNpairs,b

) NHB,b + NNHB,b. The second term on the right-hand side is
the number of orientations available to the first bonding arm in
each pair, which can assume any ofq possible orientations
whether it is hydrogen-bonded or not. The third term is the
number of orientations then available to the second bonding
arm in each of the bonding arm pairs, given that the first bonding
arm orientation is already specified. The bulk hydrogen-bonding
criterion states that a hydrogen bond is formed when the
orientations satisfy the relation|σij - σji| e λb. Thus, forλb )
1, if σij ) 9, σji has 3 available orientations that form hydrogen
bonds (i.e., 8, 9, or 10). The final term on the right-hand side
is the number of orientations available to the second bonding
arm in each of the nonbonding pairs, given that the first bonding
arm orientation is already specified. This is just the remainder
of orientationsq - (2λb + 1) that would not form hydrogen
bonds, according to the criterion discussed above.

The degeneracy of interfacial bonding arm pair orientations,
Ωw,i shows the same form as eq 20, given by

Figure 6. Growth in the number of accessible microstates in phase
space with increasing protein chain length for the combined protein
and water simulation (squares) and the separated protein in vacuo
simulation (circles).

Ωw,o ) Ωw,bΩw,iΩw,u (19)

Ωw,b(NHB,b, NNHB,b) )
(Npairs,b)!

NHB,b!NNHB,b!
qNpairs,b(2λb + 1)NHB,b(q - 2λb - 1)NNHB,b (20)
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whereNHB,i is the number of interfacial bonding arms properly
oriented for hydrogen bonding andNNHB,i is the number of
interfacial bonding arms that do not form hydrogen bonds. The
terms in the product on the right-hand side are analogous to
those in eq 20 for bulk hydrogen bonding arms.

Finally, there are a number of hydrogen bonding arms which
are unpaired, and are associated with protein monomers at
nearest-neighbor sites. The protein does not interact directly with
the water bonding arms, and thus the unpaired bonding arms
can assume any ofq orientations. The number of orientations
available to the unpaired bonding arms is given by
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